

DPP – 6 (Thermodynamics)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

https://physicsaholics.com/home/courseDetails/60

Q 1. An ideal gas with adiabatic exponent $\gamma = 2$ goes through a cycle as shown in figure in which absolute temperature varies 4 times. Find efficiency of cycle ?

https://youtu.be/RBZn17UiRzw

- Q 2. A carnot engine is made to work first between 200 K and 100 K and then between 400 K and 200 K. The ratio of efficiencies in two cases is
 - (a) 1 : 15

(a) 1/9
(b) 1/8
(c) 1/6
(d) 1/5

- (b) 1 : 1
- (c) 1 : 2 (d) 1,73 : 1

Q 3. If in refrigerator, the lower temperature coils of evaporator are -23°C and compressed gas in condenser has a temperature of 77°C. The coefficient of performance is (a)70

- (b) 20 (c) 23 (d) 2.5
- Q 4. STATEMENT-1 : Efficiency of engine with sink temperature 0 K is 100%. **because**

STATEMENT-2 : Keeping sink at ice point and source at 100° C will bring 100% efficiency.

Q 5. STATEMENT-1 : A refrigerator transfers heat from lower temprature to higher temperature.

Because

STATEMENT-2 : Heat cannot be transferred from lower temperature to higher temperature without doing any external work.

- Q 6. An ideal heat engine working at source temperature 327° C is attached to a machine which is in turn performs a work of 3.6×10^7 Joule in 1 hr. Assuming the efficiency of heat engine and machine to be 50% each and no loss of heat. Find the sink temperature of heat engine and the power supplied to engine in the form of heat.
- Q 7. An ideal monoatomic gas undergoes a cyclic process as shown in the P-V diagram. find efficiency of the cycle?

- (a) 10%
- (b) 17%
- (c) 19%
- (d) 21%
- Q 8. A carnot engine takes 3000 k-cal of heat from a reservoir at 627°C and gives it to a sink at 27°C. The work done by the engine is
 - (A) 4.2×10^6 J (B) 8.4×10^6 J
 - (C) 16.8×10^6 J (D) zero
- Q 9. A Carnot engine working between 300 K and 600 K has a work output of 800 J per cycle. The amount of heat energy supplied from the source to the engine in each cycle

is -(A) 800 J (C) 1600 J (B) 3200 J (D) 6400 J

- Q 10. An ideal gas heat engine operates Carnot cycle between 227°C and 127°C. It absorbs 6×10^4 calories at the higher temperature. The quantity of heat converted into work is equal to-
 - (A) 4.8×10^4 cal (B) 3.5×10^4 cal (C) 1.6×10^4 cal (D) 1.2×10^4 cal
- Q 11. A Carnot engine, having an efficiency of h = 1/10 as heat engine, is used as a refrigerator. If the work done on the system is 10 J, the amount of energy absorbed from the reservoir at lower temperature is
 (A) 99 J
 (B) 90 J
 (C) 1 J
 (D) 100 J
- Q 12. 100 g water at 273K is placed in a carnot refrigerator. Find approximate work done by refrigerator to freeze the water if temperature of surrounding is 300k?
 - (a) 3323J
 - (b) 2323J
 - (c) 1323J
 - (d) 323J

3

Answer Key

Q.1 a	Q.2 b	Q.3 d	Q.4 c	Q.5 b
Q.6 300K,40kW	Q.7 c	Q.8 b	Q.9 c	Q.10 d
Q.11 b	Q.12 a			5

× × ×	PLUS India's Be Interaction Structure Live Test Personal Study Pla	ICONIC est Educat ve Live Cla ed Courses s & Quizze Coach	*i ors sses & PDFs s			
24 months No cost EMI		₹:	2,333/n ₹56,0	no 00	>	
18 months No cost EMI		₹	2,625/n ₹47,2	no 50	>	
12 months No cost EMI		₹	3,208/n ₹38,5	no 00	>	
6 months No cost EMI		₹	4,667/n ₹28,0	no 00	>	
To be paid as a one-time payment View all plans						
Add a re	eferral cod	e		A	PPLY	

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS						
S	India's Best Educators						
S	Interactive Live Classes						
8	Structured Courses & PDFs						
\otimes	Live Tests & Quizzes						
	Personal						
	Study Plo	inner					
24 months		₹2.100/mo					
No cost EMI		+10% OFF ₹50,400	>				
18 months		₹2.363/mo					
No cost EMI	cost EMI +10% OFF ₹42.525						
12 months		₹2 888/mo					
No cost EMI	2 months ₹2,888/mo						
(markle		F4 200 /					
6 months		₹4,200/mo	>				
NO COST EMI		+10% OFF \$25,200					
To be paid as a one-time payment							
View all plans							
Awesome! PHYSICSLIVE code applied X							

Written Solution

DPP- 6 Thermodynamics- Heat engine and efficiency By Physicsaholics Team

1) Temperature 18 lowerst at A 4
highest at 3 (Since PV is lowerst at A

$$A$$
 highest at 3)
 $T_B = 4T_A - --(1)$
in process AB $P_V = c \Rightarrow T_A = c$
 $f_V = T_A = V_A$
 $f_V = V_A$
 f_V

molar huat Capacity in process AB

$$C = \frac{R}{Y-1} - \frac{R}{S-1} = \frac{R}{Z-1} - \frac{R}{-1-1} = \frac{3R}{Z}$$

$$AB_{AB} = NCOT = N \frac{3R}{Z} \left(\frac{4P_0V_b}{NR} - \frac{P_0V_b}{NR}\right) = \frac{9P_0V_b}{Z}$$

$$\sqrt{\frac{1}{2} + \frac{1}{2}} = \frac{1}{\frac{1}{2}} = \frac{1}{\frac{1}{2}}$$

Ans(a)

41 -10 ->· 100 H Sink temperature T. => statement 1 is true 1× at 100 c 14 Sink 1x at la point & Source 1 00 Statement 2 1/8 Strong.

Ans. c

function of a vefrigerator 18 to Frankfer low temperature body (Inside frige) to high tempe high temperature Surrounding Kefndgerader performs this doing some work both statements are four but statement 2 is not Explaination of 1

6) Work by machine =
$$3 \times 10^{7} \text{ J}$$

Power output of machine = $\frac{3 \times 10^{7} \text{ J}}{3600}$ = 10^{6} hJatt
Since efficiency 18 50) Power mput of machine = $2 \times 10^{6} \text{ hJatt}$
Output power of that engine = $2 \times 10^{6} \text{ (Matt)}$
Input power (in terms of that) of engine = $2 \times 20^{6} \text{ (Matt)}$
 $2 \times 10^{6} \text{ (Since 9 of that)}$
 $3 \times$

7)
$$\begin{split} & \mathcal{N}_{gas} = 2P_{o}V_{o} \\ & \Delta \theta_{12} = n(p \ o T = n\left[\frac{5}{2}R\right](T_{1}-T_{1}) \qquad 3P_{o} - \frac{1}{2} \\ & = \frac{5}{2}\left[(P_{o}V_{o} - 3P_{o}V_{o}) = \frac{1}{2}P_{o}V_{o}\right] \\ & \Delta \theta_{23} = n(C_{V}\ o T = -V_{A}) \\ & \Delta \theta_{32}$$

 $\frac{T_{1}}{T_{1}}$ g) W 8 Ŋ= - $\frac{800}{8} = ,$ \Rightarrow Z 600 Q = 1600 J (0)'ANS(c)

Efficiency of Carnot engine $\mathcal{V} = \frac{1}{10} = 1 - \frac{T_1 - s \log t}{T_2}$ $||\rangle$ - _ _ _ $\frac{T_1}{T_2} = 1 - \frac{1}{10}$ for Refergerator 10 10 <u>JT2</u> - ' 0 ANS(L)

12) $\int = \emptyset \left(\frac{\overline{1}}{\overline{1}} - 1 \right)$ W $= (100 \times 80 \times 42)$ 33600×27 -

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/RBZn17UiRzw

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

CLICK

